
Web Application Development:
Building a Photo Gallery

Personal Pursuit 2 – University College Twente

Martijn Atema (s1663801)
Supervisor: Fjodor van Slooten

23 May 2024

Contents

Introduction 3

Proposal 4

Design 8
Analysis . 8
Requirements . 11
Interface . 12

Frameworks 16
Next.js . 18
Gatsby . 18
Nuxt . 19
Meteor . 20
Astro . 21
Remix . 22
Conclusion . 23

Databases 25
PostgreSQL . 26
MySQL . 27
MongoDB . 28
Redis . 29
MariaDB . 30
Cassandra . 31
Conclusion . 32

Data Storage 34
File Storage . 35
Object Storage . 36
Database . 37
Conclusion . 38

Development 40
Process . 40
Results . 42
Future Changes . 45
Technology Reflection . 46

1

Reflection 48

Appendices 51
Planning . 51

2

Introduction

Web apps are a complex type of application. The browser client and server(s)
need to communicate seamlessly to perform many tasks, such as storing persistent
data, manipulating it, and presenting it beautifully to the user. Different parts
of these tasks can be performed by different components, and many technologies
exist that can be used to implement them.

In this report, I will study some of these components from the perspective of
the photo gallery application, a tool that can be used for managing many users'
photographs in an online environment. Specifically, I will look into frameworks,
databases, and data storage, and compare competing technologies to find out
which fit the product best.

3

Proposal

This report was created as part of a Personal Pursuit at the University College
Twente (ATLAS). This chapter contains the official proposal for the project.

Basic Information
Title
Web Application Development: Building a Photo Gallery

Student
Martijn Atema

Period
PP2

Abstract
For this Personal Pursuit, I will dive into my passion of software development
and improve my understanding within the field of web application development.
With a focus on web frameworks, I will first analyse and compare different
technologies that can be used in web applications.

This analysis will lead to a "web stack", a selection of technologies which will
form the basis of the application I will develop next: a photo gallery that can
manage my thousands of pictures, as well as those of anyone that wants to use
it.

Topic
What is your topic? Explain why you are passionate about or
interested in this topic?

Programming software is something that I've been interested in for a long time.
Already in the first years of high school, I started building small applications
and websites, with Visual Basic and PHP. Through the years, I added many

4

https://www.utwente.nl/en/education/bachelor/programmes/university-college-twente/
https://www.utwente.nl/en/education/bachelor/programmes/university-college-twente/

more languages, technologies, and tools to that list, and figuring these out has
always been a joy to me. Nevertheless, it is a field that keeps developing, and
one has to keep learning to stay up-to-date.

For this Personal Pursuit, I want to further expand my understanding of web
applications. Within this field, numerous meta-frameworks (libraries that
combine server and client code into one framework) have emerged over the
past years, and have become a popular choice for web-based software. Instead of
choosing the most interesting or popular one of them, I will compare a selection
to find which works best for my use case. In addition, I will compare options
for other components that are essential to the application, such as databases, to
come to a useful "stack" of technologies.

The application that I will apply these in shall solve an issue with another hobby
of mine: photography. Over the years, I have collected tens of thousands of
photographs – some with family, some with friends, and some of just nature.
The photo gallery application I will make should put an end to the nightmare
that is managing these and put the pictures back into the spotlight where they
belong.

Learning Objectives (max. 3 objectives)
What are the learning objectives you wish to reach in this PP? A
learning objective indicates what you aim to understand, or be able
to do after completion of your of your PP. One objective is given.

Objective 1
Conceive, design, and execute a goal-oriented learning experience at an academic
level, inspired by a personal interest or passion.

Objective 2
Understand and explain the differences between different options of technologies,
and be able to select appropriate technologies for a web application.

Objective 3
Be able to apply and integrate a web framework with other technologies to
develop web applications

Explaination
Explain how reaching these objectives goes beyond the regular ATLAS
curriculum and how it contributes to you becoming a 'well-rounded'
new engineer.

These objectives go beyond the regular curriculum by placing an extra focus on
finding "the right tool for the job", a choice that is often made for you in regular
courses (where the focus is on one specific technology), or not emphasised (like
in semester projects). Especially when starting new projects, but also when

5

adding new components to existing projects, being able to choose the correct
technologies is essential.

A well-rounded engineer should be able not only use the tools that are available
to them, but also select which tools to use. Together, the learning objectives for
this Personal Pursuit cover the technological process of developing an application
in a structured manner: from an idea to a final product. These abilities to
research, compare, select, and integrate different technologies are integral to the
development process not only in this field, but anywhere.

Activities
Main activities

What are you going to do? Specify the main activities of your PP
through which you intend to reach your learning objectives.

Broadly, the activities in my Personal Pursuit can be divided into a research
and development phase, which will help me reach the second and third learning
objectives respectively. The first learning objective is covered by the project in
its entirety.

During the research phase, the focus will be on comparing different technologies.
In a web application, different components work together to perform operations.
To come to a selection of technologies for the photo gallery, I will compare
options in the categories of frameworks, databases, and data storage.

For each of these categories, I will establish a set of criteria and their importance
to the project. These shall cover the features of the technology, but also other
factors, such as the developer experience. To come to the final choices, a
preselection of the most popular alternatives will be analysed and compared
against these criteria. The best-fitting option in each of the categories will be
taken to the next phase of the project.

The development phase will start with a brief design stage, during which I will
inspect other photo galleries (both offline and online) and create a mockup of my
own design. With this design, I aim to adhere to responsive design principles, to
ensure the photo gallery will be usable on a broad variety of devices.

The main focus in this phase, however, lies on the development itself. I will
study the chosen technologies further, and integrate them with my own code to
develop a web application that is fully functional and works according to the
set requirements. Afterwards, I will reflect on the chosen technologies and the
development process.

Final product
What will your final product be?

For the first phase, I will create a website that documents the different
technologies that I study. This will also include my reasoning behind the
technologies I choose for the second phase, as well as a reflection on these
choices after completing the second phase.

6

The most important final product, however, will be the result of the second
phase: the photo gallery application itself, which should be fully functional and
satisfy the requirements set together with the supervisor.

Planning
Add a planning with main activities and milestones.

See the appendix planning for a complete project overview, with time allocated
to each of the (sub-) activites.

Supervision
What kind of supervision do you request (for instance a process
supervisor, or a supervisor with specific expertise). If you already
found a (potential) supervisor, please include her/his name and
contact details.

Fjodor van Slooten (https://people.utwente.nl/f.vanslooten) has agreed to be
my supervisor. He is an expert in the fields of web design and application
development at the UT, and also teaches courses within these fields.

Outreach
In which ways will you share your results and learning experiences
with the ATLAS community? When will you do this?

First of all, the resulting application will be available publicly, and distributed
under an open-source license. This will allow everyone – both within and out
of the ATLAS community – to use the application, but also to learn from the
source code and make their own changes to it.

Secondly, the results of my research into the different technologies will be available
as a public website. This includes the comparison of different technologies, as
well as a justification and reflection of the technologies used for the photo
gallery application. This will make the choice easier for others looking to make
web applications, and will allow them to learn from my choices (and possibly,
mistakes).

At the Expo, I could present the interactive version of the application together
with an overview of the technologies and choices I made.

7

https://people.utwente.nl/f.vanslooten

Design

The photo gallery will be a self-hostable application that allows its users to
store photos and access them from any web browser. It is primarily targeted
towards individuals, families and smaller associations that want to be able to
(collaborativily) organise their photo albums centrally.

The application is mainly inspired by my own wants to organise the many
thousands of photographs I have taken over the past two decades, and to share
them with the people that were with me on the occasions I took them. Likewise,
I would like them to be able to participate by sharing their pictures with me, to
have a single place where everything is stored.

Regardless of these wishes, the photo gallery is above all a means to an end: an
opportunity to dive into JavaScript frameworks and the world that surrounds
them. Learning about these technologies and how to use them are the primary
goals of this project.

Before coming to a final design, I will perform a brief analysis of alternative
solutions in the field, to provide some perspective. Together with my own views
on the application, this will lead to the final requirements ands wishes for the
application, which I aim to realise during the development phase of the project.

Analysis
To come to a design and requirements for the Photo Gallery, I will take a look
at a few alternatives. This includes the cloud options Google Photos (targetting
consumers), Flickr (targetting amateurs) and SmugMug (targeting professionals);
although these are not direct alternatives to my product, they are a good
representation of what most people use. In addition, I will look at PhotoPrism,
an open source solution that can be self-hosted and could be considered a direct
alternative to my photo gallery. Lastly, I will take a brief look at two local
options: Google Gallery for phone and Windows Photos for pc.

Interface
When opening the various applications, the differences in colour schema become
immediatebly clear. Although changeable dark modes have become increasingly
popular, only the local apps can change colour on demand. The other options have
static colours: Google Photos and Flickr boast a light theme, while SmugMug
and PhotoPrism use a darker theme (although the latter's can be changed by

8

the administrator). As dark mode seems to be quite a controversial topic when
it comes to people's preference, I will provide a switchable option for my app.

Another thing that jumps to the eye is the fluid kind of layout most overviews use:
images are not aligned into a rigid grid, but are layed out in varying sizes to show
them without dcropping and yet fill the available space. Notably, PhotoPrism
and Google Gallery don't use this layout, and the other apps often use grids for
some more advanced features. Although I think it gives a nice look to the page,
the implementation of it seems rather complicated. For my photo gallery, I will
stick with the good old grid view.

Figure: A fluid image layout in Google Photos
One aspect in which all options align, are their responsive layouts: they are
made to work well on displays of different sizes, from mobile phones to desktop
monitors. For modern applications, this is very much essential, and it will also
be important for my photo gallery.

Organisation
Each piece of software can organise the photographs in some kind of collection.
For the local options, these are equivalent to directories on the filesystem,
meaning pictures can only be part of one folder at once. Online solutions are less
strict, and photographs can often be part of multiple albums at the same time
(PhotoPrism has both variations alongside each other, which is just confusing).
Because it simplifies permissions and other logic, my photo gallery won't allow
this behaviour, and photos will be part of only one album instead.

Besides albums, most tools have support for storing pictures as favourites, which
is a nice addition that I wish to add. Some have a trash can where deleted items
are stored for some time before being permanently deleted. Flickr, SmugMug
and PhotoPrism have features that allow users to organise albums further in a
structure. Google Photos has a great explore page that automatically detects
shared features across all images, and allows for searching by them. However, I
believe these features are too much for the initial version of the photo gallery,
and they won't be added during this projet.

9

Photographs
All photo services allow the user to upload and store photos in their original
quality, although Google also offers a feature for storing reduced-quality photos,
in order to save on storage space. These full-quality pictures can be downloaded
again; in addition, some services let the user download down-scaled versions. I
believe uploading and downloading full-size versions are an essential part of the
app, and will implement it during this project.

The software extract a varying set of metadata to show to the user. Generally,
there is a set of basic metadata that is shown in a more prominent place in the
interface. These include: size, date taken, location taken (if applicable), camera
model, and the exposure settings of the image (aperture size, shutter speed, and
ISO value). In addition to these, the services more geared towards professionals
(Flickr and SmugMug) can show some more advanced information taken from the
image. Although most are for viewing only, Flickr and Google Photos allow for
changing the date information, and in PhotoPrism almost all metadata can be
changed from the interface. During this project, I will implement basic metadata
extraction to provide some information about the photos, but will keep away
from any editing.

Figure: Basic and extended metadata in SmugMug
Besides image formats, the applications also offer support for varying types of

10

video files. In addition, PhotoPrism, Google Photos and the local applications
support motion (or live) images, which are a hybrid format type that combine
pictures with a short video taken at the same time. Although support for
these formats is quite important for the user experience, videos are much more
resource-intensive to process. Therefore, these format's won't have priority.

Users and sharing
Each of the online options has their own user system for authentication and
sharing (the offline apps are single-user only) and require authentication to create
albums to upload photos into. For my gallery, I will also use a built-in user
database instead of relying on users of an external service.

Most solutions have some way of sharing collections with other users, by inviting
them to view the album. In some cases, Google Photos being the most advanced,
this can also include collaboration permissions, which means other users can add
their own photos to the album. Sharing with other users is an important part of
the concept of my photo gallery, and should be implemented during this project.

Besides sharing with other users, the applications also support making collections
available to the public. For Flickr, this results in it showing up through the
search features of the site, but generally, it gives the user a public link to share
with other people. Although not a priority, I hope to also implement such an
option.

Requirements
A combination of my own wishes for the product, the short analysis performed in
the previous section and the learning goals of this project in its entirety lead to
the following list of requirements for the product, which are divided into "hard"
requirements, as well as wishes of varying priority.

Technical
• The application must be written using a JavaScript meta-framework
• The application should be locally deployable, without depending on

proprietary technologies
• The application should be available in a public repository under an open

source license
• The application's source should be well-documented
• The application should be written in TypeScript (high-priority wish)
• The application should be horizontally scalable to support very large image

repositories (low-priority wish)
• The application should have an automated build and testing process (low-

priority wish)

Interface
• The application interface should be responsive
• The application should display correctly in major modern browsers

11

• The application should have a light and dark mode
• The interface should display in the user's language (supporting English

and Dutch) (low-priority wish)

Organisation
• Images should be organised into an album, which are viewable as one
• Images in an album should be sorted by their date
• It should be possible to move images between albums
• It should be possible to delete images from the system
• Moving and deletion should be possible for multiple images at a time

(high-priority wish)
• Users should be able to select individual photos as their favourite and show

them together (high-priority wish)
• It should be possible to display images on a map view (low-priority wish)

Photographs
• It should be possible to upload regular (JPEG) images into the application
• It should be possible to download the original images back from the system
• The application should extract basic metadata (date and time, camera

settings) from the image
• The application should employ techniques to allow for quick loading (such

as creating thumbnails and lazy loading)
• Besides pictures, the application should support videos and motion images

(low-priority wish)

Users and sharing
• It should be possible for users to authenticate themselves with a username

and password
• Users should only be able to create albums when given the permission
• Users should be able to give other users (precise) permissions to their

albums
• It should be possible to give non-authenticated users permissions to an

album using a link (high-priority wish)

Interface
To give the development some direction, I first created a basic mockup of the
application's interface in Figma, the prototype of which is available here. The
pictures below show the most important views.

12

https://www.figma.com/proto/BHw8VRYJ1nQr9tnwrhbh95/ImagiFolio?node-id=2-4&t=Pmj8aJOOsBQIxE71-1&scaling=min-zoom&page-id=0%3A1&starting-point-node-id=2%3A4

Figure: The home screen

Figure: The album view

13

Figure: Changing an album's settings

Figure: Uploading images to an album

14

Figure: Viewing a photograph with metadata

15

Frameworks

At the core of a web application, there is custom-written code that provides the
unique experience and binds the other components together. Some of it will
run on the client (the browser) to facilitate interaction with the user. Other
parts will run on the server, for example to process data and interact with other
services, such as databases.

There are countless ways to shape this part of the application. For this project,
I will focus on JavaScript meta-frameworks. These frameworks build on UI-
frameworks (such as React or Vue) to provide additional functionality and
solve some issues that come with using them on their own. Their full-stack
nature means that front- and back-end code is more closely linked than in more
traditional setups where the client and server are kept mostly separate.

Selection
To come to a list of frameworks for consideration, I combined selections from
several recent sources123. From these, the most popular frameworks were chosen
based on the popularity (number of stars) of the projects' repositories.

This lead to the following selection of frameworks:

• Next.js
• Gatsby
• Nuxt
• Meteor
• Astro
• Remix

Criteria
To come to an objective choice, I will compare the frameworks based on the
criteria listed below. These are weighted on a scale from 1 (unimportant) to 5
(very important).

1D'Avanzo, Lewis [Omulabs] (23 August 2022). What is a JavaScript Meta-framework?
2Holmes, Ben [Prismic] (6 July 2022). Unraveling the JavaScript Meta-framework Ecosystem
3byby.dev (23 May 2023). Top 11 JavaScript Fullstack Frameworks

16

https://www.ombulabs.com/blog/javascript/what-is-a-javascript-meta-framework.html
https://prismic.io/blog/javascript-meta-frameworks-ecosystem#vite-and-the-nextjs-disruptors
https://byby.dev/js-fullstack-frameworks

Target use

Weight: 5. Different frameworks target different niches of web applications and
sites. The target use of the framework should be in line with my use of building
a photo gallery.

Client-side interactivity

Weight: 5. As the photo gallery is an application rather than a website, smooth
operation without having to reload pages is expected. The framework should be
able to handle such interactivity on the client.

Data transmission

Weight: 5. The framework should assist in using data (taken from, for example,
the database) across different parts of the application, both on the server and
client.

Server-side rendering

Weight: 3. Frameworks can provide different types of rendering strategies (when
the pages are created from the code). Server-side rendering can make sure the
application is immediately available after loading the page, and allows for basic
support of browsers without JavaScript.

TypeScript support

Weight: 3. TypeScript is a programming language that extends JavaScript
with static typing. By adding type-checking, it can help prevent errors at
runtime. Nowadays, it is supported by many libraries and tools in the JavaScript
ecosystem, and I would very much like to use it for the photo gallery as well.

Local deployment

Weight: 2. An application written in the framework should ready to serve from
one's own machine without much hastle.

Ease of use

Weight: 3. The framework should have a good documentation and not too steep
learning curve, to be able to use it to build a completed application in limited
time.

Community

Weight: 3. A larger community makes it easier to find answers to questions, both
those previously answered and your own. In addition, large communities signify
active products, which make the framework more future-proof.

17

Next.js
Next.js4 is a popular React-based framework developed by Vercel, a cloud service
company. After its first release in 2016, it has played a major role in shaping
the category of JavaScript meta-frameworks. Seven years later, the project still
gets regular major feature updates, and has now reached version 14.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Target use Score: 5. Next.js has a broad target of web applications and
websites.

Client-side interactivity Score: 5. Once the app is loaded, it behaves as a
single-page application.

Data transmission Score: 4 : Next.js has server actions which make it easy
to both query and mutate server-side data from the client.

Server-side rendering Score: 5 : Server-side rendering is a core feature of
Next.js and enabled by default.

TypeScript support Score: 5. Next.js has built-in TypeScript support and
makes it easy to create new projects with TypeScript using their own tool.

Local deployment Score: 5. A production build can be generated with a
single command, which can then be started using the Next.js tool. With a bit of
configuration, it is also possible to create a standalone build, which includes the
necessary dependencies.

Ease of use Score: 3. The documentation clearly covers its functionality, but
the many features and options that Next.js has added and changed over their 14
releases can become a bit confusing.

Community Score: 5. Next.js is the most popular framework of the six, and
has a large community of developers that is active on GitHub, Discord, Reddit,
and StackOverflow, where many questions have already been answered.

Gatsby
Gatsby5 is a React-based framework that originated as a static site generator: a
tool to create static websites based on documents and other resources. Since
late 2021, with the release of version 4, the framework also started supporting
rendering dynamic content. Recently, the project was acquired by Netlify, a
cloud platform for web applications.

4Next.js. Introduction
5Gatsby. Documentation

18

https://nextjs.org/docs
https://www.gatsbyjs.com/docs/

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Target use Score: 1. The Gatsby Framework, true to its origins as a static site
generator, heavly focuses on content-heavy sites, such as blogs and e-commerence
where high performance is needed and interactivity is limited.

Client-side interactivity Score: 5. Once loaded, Gatsby provides client-side
routing and rendering, providing an application-like experience.

Data transmission Score: 2. Gatsby has advanced GraphQL features for
accessing data, but these are only available at build-time. Features for querying
and modifying data at run-time are much more limited.

Server-side rendering Score: 2. A large part of Gatsby is based on rendering
in advance. Server-side rendering was recently added to the framework, but
it still very limited, and many dynamic pages still need to be rendered on the
client.

TypeScript support Score: 5. Gatsby provides built-in TypeScript support
and makes it easy to create new projects using it.

Local deployment Score: 1. It is easy to build the application with the
Gatsby tool. However, serving pages with server code is difficult: one has to use
the included tool, which is not intended for production (only testing), or rely on
community plugins.

Ease of use Score: 3. With knowledge from React, it should be quick to get
started. The documentation is generally clear, but past most attention to static
site generation, while leaving much less room for interactive features.

Community Score: 3. Gatsby has a Discord server, as well as GitHub
discussions page where questions can be asked. In addition, StackOverflow
contains many questions, although it hasn't been as active recently, and many
questions remain unanswered.

Nuxt
Nuxt6 is a Vue.js-based framework inspired by Next.js (and released around
the same time), and thus serving a similar purpose. It aims to provide a great
developer experience in creating web applications and brands itself "The Intuitive
Vue Framework".

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

6Nuxt. Introduction

19

https://nuxt.com/docs/getting-started/introduction

Target use Score: 5. Nuxt has a broad focus on full-stack applications and
also websites.

Client-side interactivity Score: 5. Once loaded, the application renders on
the client and behaves as a single-page application.

Data transmission Score: 3. Functions are provided to aid in fetching data
from the server and displaying it. It does, however, require a bit of manual work,
especially when manipulating data.

Server-side rendering Score: 5. Server-side rendering is one of the core
features of Nuxt and enabled by default.

TypeScript support Score: 5. Nuxt is written in TypeScript and provides
rubust built-in support for types. TypeScript is the default language for new
projects.

Local deployment Score: 5. With a single command, the Nuxt toolset can
create a standalone bundle that can be used with Node.js to serve the application.

Ease of use Score: 4. There is a clear getting-started guide in the
documentation that covers the important aspects of the framework. It builds
heavily on the basics of Vue.

Community Score: 4. Although Nuxt is not the most popular option, it has
a rather large community that is active on GitHub, Discord, and StackOverflow.
These include many questions that have already been answered.

Meteor
Meteor7 could be considered the first full-stack JavaScript meta-framework;
it was released in early 2012 and has since been regularly updated with new
features. Unlike most other meta-frameworks, Meteor can be used with any
front-end framework, including React, Vue, Svelte and Angular, and the same
code base can also be used for developing mobile and desktop applications.
Meteor focuses on providing communication between the back- and front-end,
including real-time features.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Target use Score: 5. Meteor puts their focus on interactive web apps,
specifically providing real-time features.

7Meteor. Docs

20

https://docs.meteor.com

Client-side interactivity Score: 4. The client-side of Meteor applications
behaves as a single-page application in the chosen framework. For features such
as page routing, additional plugins have to be used.

Data transmission Score: 5. The ability to easily use (real-time) information
from the (MongoDB) database in the application is one of Meteor's core features.

Server-side rendering Score: 2. By default, Meteor does not support server-
side rendering. It can, however, be manually implemented using the chosen
client-side framework.

TypeScript support Score: 3. Meteor provides a package for using
TypeScript in your own code, and an aditional package that can provide
tools for their core packages. However, a large part of the ecosystem is still
JavaScript-only.

Local deployment Score: 3. Meteor's tooling can build an application written
in the framework into standalone bundle. These bundles, however, are dependent
on a specific, outdated version of Node.js, which makes it rather unflexible
and difficult to use in environments that already contain newer versions of the
runtime.

Ease of use Score: 2. Meteor has its own package ecosystem, which means
things tend to work a bit different from normal. The documentation is expansive,
but because many features are put into packages, things can be difficult to find.

Community Score: 3. Meteor has an official forum where answers to many
questions can be found, in addition to those on StackOverflow. With the declining
popularity of the framework, however, the community has become less active.

Astro
Astro8 is a relatively new framework that aims to minimise the amount of
JavaScript sent to the client. It introduced a frontend architecture where
websites are largely rendered on the server, but contain so-called Islands of
interactivity. For these Islands, Astro can work with a variety of frameworks,
including React and Vue, or lightweight alternatives like Preact and Alpine.js.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Target use Score: 2. Astro advertises itself as a framework for content-
driven websites, such as blogs and marketing. It focuses on fast loading and
search-engine optimalisation.

8Astro. Why Astro?

21

https://docs.astro.build/en/concepts/why-astro/

Client-side interactivity Score: 3. By default, applications work similar
to classic websites, with page navigation requiring a reload. Recently, however,
Astro has gotten opt-in support for client-side routing, which makes it feel more
like an application. Rendering mostly remains server-side, however.

Data transmission Score: 2. There is support for fetching data from API
routes, but integration with the interface has to be done manually.

Server-side rendering Score: 5. Astro focuses heavily on keeping most
rendering away from the client.

TypeScript support Score: 5. Astro has built-in TypeScript support.
Creating a new application using their wizard also makes it possible to use
TypeScript.

Local deployment Score: 4. An official adapter plugin needs to be installed
and configured to be able to build server-rendered sites, after which the
application can quickly be deployed.

Ease of use Score: 5. Generally keeps to the basics of HTML, JavaScript and
the chosen UI framework, which makes it easy to get started. Astro also has
clear documentation.

Community Score: 2. Astro has a Discord server with quite a large active
community. Finding answers on StackOverflow is difficult, as the number of
questions is small and many remain unanswered.

Remix
Remix9 is a full-stack framework built on top of a popular React routing
framework. It places an emphasis on the user interface; it's router allows
developers to create nested interfaces, each with their own layer of interactivity.
Additionally, it leverages server-side rendering with support for traditional web
standards, to allow it to even work in browsers without JavaScript.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Target use Score: 5. Remix broadly targets interactive websites and
applications.

Client-side interactivity Score: 5. Once the initial load is complete, a Remix
application behaves as a single-page application and renders client-side.

Data transmission Score: 4. Remix makes it easy to use loaders to put
information into the interface, and actions to update data from the interface.

9Remix. Introduction, Technical Explanation

22

https://remix.run/docs/en/main/discussion/introduction

Server-side rendering Score: 5. Remix focuses heavily on web fundamentals
and is built around server-side rendering.

TypeScript support Score: 5. Remix is largely written in TypeScript itself
and provides excellent built-in support. New projects created with their tool use
TypeScript by default.

Local deployment Score: 4. It is easy to create a production build of the
application, which can then be used with Remix's basic app server or another
Node.js HTTP server using an adapter.

Ease of use Score: 4. Because Remix puts an emphasis on web standards,
understanding of those can get one quite far. There are still concepts that you
need to get used to, such as the nested routes, but the documentation is clear
and helpful.

Community Score: 3. Remix has a Discord server with quite a large active
community, as well as a GitHub discussions page where questions can be answered.
Answers on StackOverflow are more difficult to find: there are not many questions,
and many remain unanswered.

Conclusion
The table below shows an overview of how well the frameworks scored for each
of the criteria. Totals are calculated by taking the sum of the scores multiplied
by the respective weight factor.

Criterion Weight N
ex

t.j
s

G
at

sb
y

N
ux

t

M
et

eo
r

A
st

ro

R
em

ix

Target use 5 5 1 5 5 2 5
Client-side interactivitiy 5 5 5 5 4 3 5
Data transmission 5 4 2 3 5 2 4
Server-side rendering 3 5 2 5 2 5 5
TypeScript support 3 5 5 5 3 5 5
Local deployment 2 5 1 5 3 4 5
Ease of use 3 3 3 4 2 5 4
Community 3 5 3 4 3 2 3
Total 134 81 129 106 94 131

Based on these results, Next.js comes out on top. However, due to the small
margins, Nuxt and Remix should also be considered as serious options for
continuing development with.

An important difference between these three options is the client framework they
are based on: Next.js and Remix use React, while Nuxt uses Vue. Of these two,

23

React remains the most popular10. In addition, I have some limited, but good
experience with the framework, which makes me prefer Next.js and Remix over
Nuxt.

Although Remix puts a large emphasis on developer experience and being easy
to use, the popularity and larger community make me choose Next.js as the
framework to develop the Photo Gallery with. Besides making it easier to find
solutions to any problems I might encounter, the widespread adoption of Next.js
ultimately makes it a more useful skill to have.

10Stack Overflow (2023). Stack Overflow Developer Survey 2023

24

https://survey.stackoverflow.co/2023

Databases

Most applications need to store and access structured information, which is
typically organised into a database. These databases are generally managed by
a piece of software, the database management system (DBMS), through which
the application can interact with the database11.

Database systems exist in many shapes in forms. For the past decades, relational
databases --- which can be queried and modified by using the structured query
language (SQL) --- have been the dominant type12. In this type of DBMS, data
is organised into tables with rows and columns13. Each row in the table contains
a data record, which each column being a property of it. Because every data
record has a unique identifier, relations can be established between records in
different tables.

Recently, however, other types of databases have emerged and become more
popular. These are broadly categorised as NoSQL databases, as they use other
languages for accessing the data. With these database systems, data is stored
differently to relational databases14. For example, some store data as schemaless
documents with keys and values, some as graphs with nodes and edges, and
some only associate keys and values.

Selection
To come to a selection of databases, I took into consideration the most popular
database technologies according to the Stack Overflow Dev Survey15 and the
DB-Engines16 ranking. These were further filtered down based on the following
criteria:

• The technology must be a server that can be self-hosted.
• The technology must be broadly applicable (instead of focussing on specific

types of data, such as text search, time series, or spatial data)
• The technology must be available under an open-source license.

This lead to the following final selection of databases:
11Oracle (27 September 2021). What Is a Database?
12Oracle (27 September 2021). What Is a Database?
13Oracle (18 June 2021). What is a Relational Database (RDBMS)
14MongoDB. What is NoSQL?
15Stack Overflow (2023). Stack Overflow Developer Survey 2023
16DB-Engines (January 2024). DB-Engines Ranking

25

https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.mongodb.com/nosql-explained
https://survey.stackoverflow.co/2023
https://db-engines.com/en/ranking

• PostgreSQL
• MySQL
• MongoDB
• Redis
• MariaDB
• Cassandra

Criteria
To come to an objective choice, I will compare the database systems based on
the criteria listed below.

Data integrity

Weight: 5. The database should make sure that data integrity is maintained by
compling with ACID (Atomicity, Consistency, Isolation, Durability) principles.
In addition, the data model should aid in keeping data items consistent.

Handling necessary data

Weight: 5. Although the data requirements of the target use of our application
are not massive, the database system should still be able to comfortably handle
items for hundreds of users, thousands of albums, and millions of pictures.

JavaScript support

Weight: 5. To be able to use the database from the application, it should have
supporting libraries available for JavaScript. Preferrably, these should also have
typing support by using TypeScript.

Performance

Weight: 3. The database system should be able to handle queries quickly, even
under higher loads.

Query support

Weight: 3. Advanced query support, such as combining data from multiple
sources, can avoid having to do multiple

Scalability

Weight: 2. Being able to scale the database can allow our application to grow to
larger sizes by storing more information and being able to handle more requests.

PostgreSQL
PostgreSQL17 is a popular object-relational database management system that
is known for its powerful feature set and extensibility. The database makes it

17PostgreSQL. About

26

https://www.postgresql.org/about/

possible to add custom data types, procedures (even in different programming
languages) and has a large ecosystem of extensions. In addition, conforms closely
to the SQL standard, moreso than other relational databases.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Data integrity Score: 5. Data integrity is an important feature of PostgreSQL.
It is fully ACID-compliant, meaning that it has robust transactions. In additions,
relations between tables can ensure that related data items remain consistent.

Handling necessary data Score: 5. PostgreSQL should have no trouble
handling millions of rows in a table.

JavaScript support Score: 4. There are many libraries18 available that
support PostgreSQL, with different levels of abstraction and functionality.

Performance Score: 4. PostgreSQL performs very well in benchmarks1920,
both for simple and more complex operations.

Query support Score: 5. There is great support for SQL, including advanced
features. Joining data is a core feature of relational databases like PostgreSQL.

Scalability Score: 2. PostgreSQL is mainly built to be scored vertically, by
increasing the machine's resources. Additionally, it supports read replicas to
increase read capacity. Third-party extensions and compatible software could
further expand these features.

MySQL
MySQL21 is a popular choice of database management system that is developed
by Oracle. As the name suggests, it is a relational database system, that uses
SQL for managing data. Originally, MySQL was created to be fast, and can
handle demanding loads. It is known for being easy to use, and a popular choice
for beginning developers22.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

18npm. Home
19OnGres (July 2019). Performance Benchmark PostgreSQL / MongoDB
20Cal Mitchel [Albatross] (13 February 2023). MariaDB vs PostgreSQL Performance

Comparison
21MySQL (2024). What is MySQL?
22Stack Overflow (2023). Stack Overflow Developer Survey 2023

27

https://www.npmjs.com
https://info.enterprisedb.com/rs/069-ALB-339/images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf
https://www.albatrossmigrations.com/blog/mariadb-postgresql-performance
https://www.albatrossmigrations.com/blog/mariadb-postgresql-performance
https://dev.mysql.com/doc/refman/8.3/en/what-is-mysql.html
https://survey.stackoverflow.co/2023

Data integrity Score: 5. MySQL is ACID-compliant by providing robust
transaction support. Relations between table columns further ensure that data
items in the database remain consistent.

Handling necessary data Score: 5. MySQL should not have any problems
in handling tables of several million rows.

JavaScript support Score: 4. There are many third-party libraries23

availables for MySQL, each with their own feature set.

Performance Score: 3. Benchmarks242526 show that MySQL gets worse
performance than its relational alternatives MariaDB and PostgreSQL.

Query support Score: 4. MySQL's supports SQL, but does not support some
of the more advanced features that PostgreSQL supports.

Scalability Score: 2. To scale MySQL, the machine resources have to be
increased, or read replicas can be set up to improve the request capacity
of the system for read-heavy applications. Otherwise, one has to turn to
other applications in the MySQL ecosystem, which can further expand these
capabilities.

MongoDB
MongoDB27 is a document-oriented database server, a type of NoSQL database
that stores information as collections of documents. These documents use a
format similar to JSON, and don't (necessarily) have to adhere to a schema,
which makes MongoDB suitable for unstructured data, and makes it easier to
make changes to the data structure. In part for these reasons, document stores
(with MongoDB at the forefront) have grown massively in popularity over the
last decenium.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Data integrity Score: 4. Recent versions of MongoDB are ACID-compliant
by allowing multi-document transactions. Although the database has all features
necessary to ensure consistent data, MongoDB depends on denormalisation of
data to perform optimally. As this results in duplicate data, extra care has to
be taken by the application to ensure these stay in sync.

23npm. Home
24Jesus Castello [Stackshare] (2023). PostgreSQL vs MySQL vs MariaDB - Help me Decide
25Cal Mitchel [Albatross] (15 February 2023). Aurora vs MariaDB vs MySQL performance

and cost comparison
26Jesus Castello [Stackshare] (2023). PostgreSQL vs MySQL vs MariaDB - Help me Decide
27MongoDB. What is MongoDB?

28

https://www.npmjs.com
https://stackshare.io/stackups/mariadb-vs-mysql-vs-postgresql
https://www.albatrossmigrations.com/blog/aurora-vs-mariadb-vs-mysql
https://www.albatrossmigrations.com/blog/aurora-vs-mariadb-vs-mysql
https://stackshare.io/stackups/mariadb-vs-mysql-vs-postgresql
https://www.mongodb.com/what-is-mongodb

Handling necessary data Score: 5. MongoDB shouldn't have problems in
managing a collection with millions of documents.

JavaScript support Score: 5. The JavaScript-like query language and
document format of MongoDB integrate with JavaScript very well. There
is an official driver available, as well as support from many third-party libraries28

that offer additional functionality.

Performance Score: 3. When used properly with denormalised data,
MongoDB should be very performant. However, benchmarks29 show that it does
generally lag behind PostgreSQL.

Query support Score: 4. MongoDB uses a powerful JavaScript-based query
language that includes advanced pipelines for aggregating data. However, as
MongoDB is not intended to be relational, these are not intended to be used
very regularly.

Scalability Score: 4. Sharding is supported to distribute data between
machines and increase the database's capacity. However, shards have to be
defined manually by carefully picking sharding keys to ensure an even distribution.

Redis
Redis30 is an in-memory key-value data store. It is widely applied in situations
where low latency is key, such as caches, but can also be used as a document
database or message broker. By just using keys for accessing data, and holding
the entire store in memory, Redis can offer constant-time lookups and changes.
Although memory is the primary data source, options for persistence are provided,
which offer varying amounts of data protection.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Data integrity Score: 2. Persistency is not neccessarily ensured due to the
memory-nature of the store. Transactions in Redis offer limited guarantees
for data integrity. In addition, there is no support for relations, meaning that
consistency between items has to be managed by the application.

Handling necessary data Score: 2. As Redis is an in-memory store, the
amount of data is constrained by the memory size, which tends to be much
smaller than the disk size. Depending on the amount of data stored per picture,
it would be able to handle the amounts, but the machine would need plenty of
memory and would not be able to expand much beyond that.

28npm. Home
29OnGres (July 2019). Performance Benchmark PostgreSQL / MongoDB
30Redis. Introduction to Redis

29

https://www.npmjs.com
https://info.enterprisedb.com/rs/069-ALB-339/images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf
https://redis.io/docs/about/

JavaScript support Score: 3. There are a few third-party clients31 available
that support Redis' feature-set (including some addons). Other libraries generally
have a heavy focus on caching and session storage.

Performance Score: 5. Since all data is stored in memory and Redis only
supports basic access patterns, the store can be extremely quick.

Query support Score: 2. As a key-value store, Redis prioritises simplicity
and speed. It has features for getting and settings values using their key, but
does not support searching, relationships, or separating items into collections.
There are, however, addons that do provide additional functionality close to
what regular databases would offer.

Scalability Score: 3. Data can be kept in a cluster, in which it is automatically
split between multiple instances of Redis. However, applications do need to
connect to all nodes individually, and overall capacity remains limited due to
the database being stored in memory.

MariaDB
MariaDB32 is a relational database that originated as a fork of MySQL (by its
original creators) due to worries after Oracle took over the product. Originally,
MariaDB aimed for drop-in compatability with MySQL. Even though that's no
longer the case, it retains very good compatability --- software developed for
MySQL generally works well with MariaDB and vice versa.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Data integrity Score: 5. MariaDB provides strong transaction support and
is ACID-compliant. Relations can be defined between tables to ensure that data
in different tables is consistent.

Handling necessary data Score: 5. There should be no problems in handling
millions of items.

JavaScript support Score: 4. There is an official MariaDB connector
available. In addition, it is supported by many third-party libraries33 with
different features (in part due to its compatability with MySQL).

31npm. Home
32MariaDB. MariaDB in brief
33npm. Home

30

https://www.npmjs.com
https://mariadb.org/en/
https://www.npmjs.com

Performance Score: 3. MariaDB can handle large numbers of requests.
Benchmarks343536 show that it does lag behind PostgrSQL in speed, although it
performs better than its direct competitor MySQL.

Query support Score 4. Although MariaDB works with SQL, it misses some
of the more advanced features that PostgreSQL supports.

Scalability Score: 2. On its own, MariaDB supports read replicas to increase
the request capacity of the database. Within the MariaDB platform, there are
additional products that can add further scaling support.

Cassandra
Cassandra37 is a NoSQL database developed by Apache that focuses on being
distributed. Although it is possible to run it as a single instance, one should
run it as a cluster to benefit from its advantages. These clusters runs in a
masterless manner, where all nodes are equal, and appear as one database
system to the client. Data is automatically distributed between the nodes for
optimal performance. Behind the scenes, Cassandra is a wide-column store38,
an architecture that somewhat resembles traditional (relational) databases. In a
wide-column table, however, not all rows have to use the same set of columns.

Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Data integrity Score: 2. Cassandra is not fully ACID-compliant, but does
offer transactions with basic guarantees. As Cassandra is non-relational, there are
no references between tables, and consistency between them has to be managed
by the application itself.

Handling necessary data Score: 5. Cassandra is built for large datasets and
should not have problems handling millions of items, even on a single node.

JavaScript support Score: 3. There's a complete driver library39 available.
However, support from other libraries with additional features is very limited.

Performance Score: 3. Benchmarks40 show that Cassandra scores better
than MongoDB on some metrics (write operations), and worse on others (read
operations).

34Jesus Castello [Stackshare] (2023). PostgreSQL vs MySQL vs MariaDB - Help me Decide
35Cal Mitchel [Albatross] (15 February 2023). Aurora vs MariaDB vs MySQL performance

and cost comparison
36Jesus Castello [Stackshare] (2023). PostgreSQL vs MySQL vs MariaDB - Help me Decide
37Apache Cassandra. Cassandra Basics
38Apache Cassandra. Architecture Overview
39npm. Home
40[Unknown bib ref: benchmark-cassandramongo]

31

https://stackshare.io/stackups/mariadb-vs-mysql-vs-postgresql
https://www.albatrossmigrations.com/blog/aurora-vs-mariadb-vs-mysql
https://www.albatrossmigrations.com/blog/aurora-vs-mariadb-vs-mysql
https://stackshare.io/stackups/mariadb-vs-mysql-vs-postgresql
https://cassandra.apache.org/_/cassandra-basics.html
https://cassandra.apache.org/doc/latest/cassandra/architecture/overview.html
https://www.npmjs.com

Query support Score 3. The Cassandra Query Language (CQL) shares
similarities with SQL. However, it is not a relational database, and does not
support combining data from multiple tables (joins).

Scalability Score: 5. Being scalable is Cassandra's main selling point. Data
distribution between nodes happens automatically and is invisible to the
application. It is easy to add nodes to improve the capacity of the system.

Conclusion
The table below shows an overview of how well the database systems scored
for each of the criteria. Totals are calculated by taking the sum of the scores
multiplied by the respective weight factor.

Criterion Weight Po
st

gr
eS

Q
L

M
yS

Q
L

M
on

go
D

B

R
ed

is

M
ar

ia
D

B

C
as

sa
nd

ra

Data integrity 5 5 5 4 2 5 2
Handling necessary data 5 5 5 5 2 5 5
JavaScript support 5 4 4 5 3 4 3
Performance 3 4 3 3 5 3 3
Query support 3 5 4 4 2 4 3
Scalability 2 2 2 4 3 2 5
Total 101 95 99 62 95 78

Four of the six databases end very close together at the top of these results. This
includes the three relational databases (PostgreSQL, MySQL and MariaDB),
which are similar in their architecture, but the NoSQL database MongoDB also
scores high.

The choice between a relational database and MongoDB comes down to a trade-
off between data robustness and scalability. MongoDB is generally recommended
for specific purposes, such as fast prototyping, unstructured data and massive
scales41. On the other hand, it can be challenging to design data relations and
join different data types, which makes relational databases more suitable in most
scenarios: "If you don’t know what database to choose, then choose a relational
database (MySQL or PostgreSQL)"42. Because the data for the Photo Gallery
is naturally relational --- items like photos, albums and users are all linked ---
for me, these qualities outweigh the importance of scaling in this project.

The differences between PostgreSQL, MySQL and MariaDB comes more down
to the details in advanced features and implementation43, of which the impact
to the application should in most cases be limited. For the Photo Gallery, I will

41Charcles Wang [Fivetran] (14 June 2021). When to use NoSQL and MongoDB
42Yerem Khalatyan [InConcept Labs] (9 August 2022). When you should NOT use

MongoDB?
43Hussain Nasser (6 February 2023). Postgres vs MySQL

32

https://www.fivetran.com/blog/when-to-use-nosql-mongodb
https://www.inconceptlabs.com/blog/when-not-to-use-mongodb
https://www.inconceptlabs.com/blog/when-not-to-use-mongodb
https://medium.com/hnasr/postgres-vs-mysql-5fa3c588a94e

continue with PostgreSQL, as it scores a bit better on performance and features,
and because it fits better with my current set-up.

Even though I will be developing the application with support for just one
database now, due to the similar architecture, it could be possible to add support
for additional (relational) database systems in the future. In fact, this is not
uncommon amongst other self-hosted applications, such as NextCloud44.

44Nextcloud (2024). System requirements

33

https://docs.nextcloud.com/server/latest/admin_manual/installation/system_requirements.html

Data Storage

Data that is stored in databases is structured and usually smaller in size. However,
there may also be larger data items that need to be stored somewhere. For the
photo gallery, large amounts of photographs need to be stored. With each of
them being a few megabytes, having many albums worth can quickly lead to
terabytes of data. When videos are added to the mix, these numbers rise even
quicker.

Selection
I will focus on three ways to store such data:

• As files on a filesystem
• As objects in a repository
• In the general database

Each of these methods can be provided by several software systems, but from the
perspective of the application, the actual implementation is largely abstracted
away.

Criteria
To come to an objective choice, I will compare the data storage options based
on the criteria listed below.

Total size

Weight: 5. The storage system should be able to handle millions of items and
the resulting amounts of data, which could add up several terabytes worth, or
more when videos are included.

Item size

Weight: 3. Some photographs, for example panorama's, may be rather large in
size, not to mention video files. Therefore, the system should support storing
files that are several gigabytes in size.

34

Performance

Weight: 3. The system should provide good performance in both adding files to
the system and retrieving them from the system.

Accessing data

Weight: 3. The most common operation will be retrieving items from storage for
the user. The service should make it easy to serve its contents.

JavaScript support

Weight: 5. The storage service should be accessible from the application and
should therefore have interfaces or libraries for JavaScript (and, preferrably,
TypeScript).

Scalability

Weight: 2. A data store that is able to scale can allow our application to grow
to larger sizes.

Portability

Weight: 1. Being able to access the data from a different machine, or multiple
machines at the same time, can be useful when the application has to transfer
between servers.

File Storage
The best-known method for storing data must be files. It's the way that we use
data on the devices that we use daily, such as personal computers and mobile
devices. In a file-based storage system, pieces of information as stored as files,
which are hierarchically arranged within (nested) directories on a filesystem45.

File access can be implemented in different ways46. There are several filesystems
(such as Ext4, NTFS and ZFS) that can be used to format local drives or block
volumes stored on a network. In addition, there are network file protocols (such
as NFS, SMB and GlusterFS) that allow for accessing files on another server
(or a cluster of servers) over the network. In the end, however, most of these
differences are abstracted away by the operating system, and files accross them
can be accessed using the same interface from the application.

Overview
Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

45Red Hat (1 February 2018). File storage, block storage, or object storage?
46Franc, Océane [Scaleway] (2020). Understanding the Different Types of Storage

35

https://www.redhat.com/en/topics/data-storage/file-block-object-storage
https://www.scaleway.com/en/blog/understanding-the-different-types-of-storage/

Total size Score: 4. For most physical setups, a few terabytes of data can be
easily provided by harddrives. In virtual (hosted) situations, it may be more
difficult to expand to such sizes.

Item size Score: 5. Modern filesystems support sizes far beyond the size of
images and videos.

Performance Score: 5. Depending on the underlying filesystem, file access
can be very performant. Even in networked file situations, the data tends to be
close to the server, which makes access quicker.

Accessing data Score: 3. Direct access to the files is not possible, but files
can easily be served directly by the back-end of the application.

JavaScript support Score: 5. Node.js has native methods for managing files
and directories.

Scalability Score: 3. Although it is possible to add several drives to a system
to increase capacity, this cannot be done repeatedly. There exist distributed
filesystems, however, which can mitigate this issue.

Portability Score: 3. Depending on the exact type of network storage, data
could by used by several machines at the same time, or moved to another machine
on the same network. Beyond that, transferring data is necessary, which should
not be difficult.

Object Storage
With object storage, instead of organising data as files into folders, each piece of
data is treated as an object with a unique identifier47. This object contains the
data itself, as well as metadata that describes the data. Although a file system
can be emulated with object storage, the system is in essence a flat repository,
where all files are stored in one level.

These repositories are accessed over a HTTP interface. Although there are
multiple providers with their own API, Amazon S348 has become the biggest
provider, and many alternatives offer a compatible API (for example, Google49,
Wasabi50, and Backblaze51). In addition, there are compatible open source
self-hosted alternatives, such as MinIO52. For that reason, I will focus on S3-
compatible services for this comparison.

47Red Hat (1 February 2018). File storage, block storage, or object storage?
48Amazon Web Services. Amazon S3
49Google Cloud. Cloud Storage
50Wasabi Technologies. Wasabi Hot Cloud Storage
51Backblaze. B2 Cloud Storage
52MinIO Inc. MinIO Object Storage

36

https://www.redhat.com/en/topics/data-storage/file-block-object-storage
https://aws.amazon.com/s3/
https://cloud.google.com/storage
https://wasabi.com/hot-cloud-storage/
https://www.backblaze.com/cloud-storage
https://min.io/product/overview

Overview
Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Total size Score: 5. Object storage is designed to support large amounts of
data.

Item size Score: 5. Objects up to several terabytes in size are supported,
which is more than enough for our purupose.

Performance Score: 3. All operations with an object storage system happen
over the HTTP API, which results in some overhead.

Accessing data Score: 5. Because object storage is HTTP-based and supports
access control, users can be authorised to download files directly from the storage
system.

JavaScript support Score: 4. There is a complete S3 SDK53 available, which
is developed by Amazon, as well as some third-party libraries.

Scalability Score: 5. Object stores are intended to be scaled to near-infinite
sizes by adding additional nodes.

Portability Score: 5. Because object stores are accessed over a public API,
they can easily be used by another server, even if it is on a different network
(although this can result in slower performance). Migrating data between services
is also generally well-supported.

Database
In our stack, there's already a component for storing data: the database. As
PostgreSQL54 also has support for storing binary data types with arbitrary data,
it may seem logical to also use it for storing binary files. After all, that results
in one less component to worry about.

Overview
Comparison
Each of the requirements is scored on a scale from 1 (very poor) to 5 (very good).

Total size Score: 3. Although the database should be able to store terabytes
worth of data, disk and database limits can cause issues beyond that.

53npm. Home
54PostgreSQL Wiki (5 May 2021). BinaryFilesInDB

37

https://www.npmjs.com
https://wiki.postgresql.org/index.php?title=BinaryFilesInDB&oldid=35967

Item size Score: 4. Standard binary data types in PostgreSQL have size limits
of 1GB, which may not be enough in some cases. However, PostgreSQL also has
a Large Objects feature, which can automatically chunk data and support larger
files by storing them in a separate system.

Performance Score: 1. Having to read and write larger amounts of binary
data to and from the database can result in a much larger strain on its connection,
which can also affect performance of normal queries.

Using the database for binary data results in a much larger strain on the database
system, which can also affect performance of normal queries.

Accessing data Score: 2. Through PostgreSQL clients and libraries, the data
can be retrieved as a stream, and then served to the clients.

JavaScript support Score: 2. Although there are JavaScript libraries55

available for PostgreSQL, support for large objects is limited to a single,
unmaintained library.

Scalability Score: 1. PostgreSQL is limitid in its capabilities for scaling. In
addition, large objects are stored in a system table and therefore not replicated.

Portability Score: 2. The database server can be connected to by another
server. Transferring the data over to another database can be a difficult and
manual process.

Conclusion
The table below shows an overview of how well the storage solutions scored
for each of the criteria. Totals are calculated by taking the sum of the scores
multiplied by the respective weight factor.

Criterion Weight Fi
le

O
bj

ec
t

D
at

ab
as

e

Total size 5 4 5 3
Item size 3 5 5 4
Performance 3 5 3 1
Accessing data 3 3 5 2
JavaScripts support 5 5 4 2
Scalability 2 4 5 1
Portability 1 3 5 2
Total 95 99 50

55npm. Home

38

https://www.npmjs.com

File and object storage are both strong contenders. Object storage is more
cloud-focussed, but at the same time allows access from across the internet. File
storage is easier to start with locally, as every server has some kind of drive that
files can be stored on. Although the infinite scalability of object systems is an
attractive feature, local file storage should in many cases be enough for personal
uses. Ultimately, this makes files storage more in line with the self-hosted nature
of the Photo Gallery, which means I'll be using it to develop the application.

39

Development

Having chosen Next.js, PostgreSQL and file storages as the technology stack for
the project, the development progress could commence. The following sections
document this process with its most important choices, the results in relation to
defined requirements and a reflection on the chosen technologies before taking a
look at what future changes could make the product even better.

The code written as part of the development process is available publicly and
openly through the GitHub repository at https://github.com/Atema/ImagiFolio.

Process
Setting up & Project Structure
Next.js makes bootstrapping a new project very easy using their create-next-app
utility. Generally, I used the default settings that the utility suggested.
Importantly, this included using TypeScript, Tailwind CSS for styling, and the
app router. The latter, which replaces the original Next.js pages router, enables
React's newest features, such as server components.

Although Next.js doesn't prescribe a project structure, their default examples
put everything into the app directory that is used for defining page routes. As I
prefer to keep things a bit more separated, I opted for enabling the src directory
during bootstrapping. Within this directory, I created several folders for different
elements:

• actions: server-side actions that are called from the client to manipulate
things on the server.

• app: used by the app router to define pages and layouts.
• components: re-usable React components that can be included in pages
• db: methods for accessing data in the database
• files: methods for accessing and manipulating files on the file system
• utils: utility functions for use in other methods

Where useful, I created sub-directories to categorise files.

40

https://github.com/Atema/ImagiFolio

Styling and Components
As it was the default option and a framework I'd been interested in for a while,
I used Tailwind CSS56 for styling the application. This library provides utility
classes that can be used to control the CSS styling of an element. An upside
of this method is that the styles are directly in the code, which makes it very
easy to make changes and apply new styles to an element. On the other hand,
having to use many classes can also make the code feel bloated, and makes it
more difficult to re-use styles.

Luckily, React is built around components, functions that contain layout, styling
and code, and which can be re-used as often as one likes. To keep the code
organised, I created components for often-used design elements, such as buttons
and input fields, but also for larger items, such as photo lists and different types
of dialogs.

Besides creating my own, as a shortcut, I used some off-the-shelf components
for more complex elements, such as drop-down menus and the upload box. For
these, I chose libraries (mostly Radix Primitives57) that did not provide any
styling themselves, so that their design could be kept in line with the rest of the
interface.

Database
There is a plethora of libraries available for connecting to a database, ranging
from bare-bones to having a lot of features. For this project, I used Prisma58,
a library belonging to the latter category. Prisma is an ORM that allows the
developer to define the data model in a schema file, and then generates types
and methods for accessing the data. In addition, it can apply the schema to the
database itself and handle data migrations to ensure the data in the database
has the same format.

These functionalities make it very easy to interact with the data and make
changes to the schema without having to worry much about updating the
database. There are, however, also downsides: Prisma is heavier and has more
overhead compared to leaner options, leading to a bit lower performance59.
Originally, I considered swapping it out for a more barebones option when the
database model stabilised, but due to time constraints, and as I have not had
any problems with Prisma, this is off the table.

File Handling
The application needs to be able to handle lots of image files. To give the
end-user the ability to decide where their images are stored, I made the image
directories (per type of image) configurable. Within these image directories,
images are named by their unique identifier, which ensures there are no collisions
and they are easy to look up without having to find a file name. The downside

56Tailwind CSS. Get started with Tailwind CSS
57Radix Primitives. Introduction
58Prisma. What is Prisma ORM?
59Drizzle Team (2023). Postgres benchmarks between Drizzle ORM and other popular ORM

libraries

41

https://tailwindcss.com/docs/installation
https://www.radix-ui.com/primitives/docs/overview/introduction
https://www.prisma.io/docs/orm/overview/introduction/what-is-prisma
https://github.com/drizzle-team/drizzle-northwind-benchmarks-pg
https://github.com/drizzle-team/drizzle-northwind-benchmarks-pg

is that the image files are not recognisable by their name; however, that is not
an intended use-case anyway.

Next.js provides a component for optimising images on-the-go (when requesting
them) or during build time. However, its options did not entirely fit the use-case
of the photo gallery. Instead, I decided to generate thumbnails and previews of
the images during the upload process, which ensures they are always available
when the image is in the database. The conversion library, sharp60, is the same
one used internally by Next.js, and fast enough that the time added to the
uploading process is generally hardly noticable. I did use the image-component
for its other features, such as lazy-loading the images.

Data Fetching and Mutation
Server components are an essential part of the Next.js app router. These
components are rendered on the server, and therefore have access to backend
resources such as the database and filesystem. I used this method throughout
the application to render dynamic data. Where interactivity is needed, the data
can be passed seamlessly to client components that are hydrated on the client
to allow their code to run.

To allow the user to perform actions on the backend, such as server mutations,
Next.js provides server actions, which are also an integral part of the app router.
These can be invoked from forms and client components, after which they run
on the server and return their result. Due to their simplicity, these are generally
what I used for any data mutations, although I had to rely on a more traditional
POST request for uploading new files. On the server side, I used Zod61 for
validating incoming data from the client and provide meaningful error messages.

Results
Now that the development process has finished, it is time to look back at the
requirements and see to what extent they have been accomplished. This section
re-lists all requirements, together with a short description of how well they have
been achieved.

Technical
• The application must be written using a JavaScript meta-framework

Fulfilled. The application was written using Next.Js

• The application should be locally deployable, without depending on
proprietary technologies

Fulfilled. The application can be built and deployed using the instructions
provided in the repository and is only dependent on open-source libraries.

• The application should be available in a public repository under an open
source license

60sharp. High performance Node.js image processing
61Zod. Documentation

42

https://sharp.pixelplumbing.com
https://zod.dev

Fulfilled. The application is available on GitHub under the MIT license, a
recognised open source license.

• The application's source should be well-documented

Fulfilled. The source code is annotated with JSDoc comments to describe
functionality. Documentation files in the repository describe usage of the
application.

• The application should be written in TypeScript (high-priority wish)

Fulfilled. The entire application is type-annotated with TypeScript, and
Prisma was used to make database operations type-safe.

• The application should be horizontally scalable to support very large image
repositories (low-priority wish)

Unfulfilled. The app server itself itself is stateless, which means multiple
instances can be spun op to deal with extra requests. However, all instances
need access to the same database and iamge store, which are both difficult
to scale.

• The application should have an automated build and testing process (low-
priority wish)

Unfulfilled. Next.js has no documentation on how to publish a pre-built
version. Adding tests and automating the builds proved too much work.

Interface
• The application interface should be responsive

Fulfilled. The interface shows data differently depending on the viewport
size (whether it is viewed from a computer, phone, or something in
between).

• The application should display correctly in major modern browsers

Fulfilled. The interface works as intended on recent versions of Chromium
and Firefox (on Windows and Android). More testing would be needed to
verify these results across platforms, but that is beyond the scope of this
project.

• The application should have a light and dark mode

Fulfilled. The interface has both light and dark modes that switch depending
on the system settings. However, there is no possibility to switch from the
user-interface via a setting.

• The interface should display in the user's language (supporting English
and Dutch) (low-priority wish)

Unfulfilled. Was not attempted due to time limitations.

Organisation
• Images should be organised into an album, which are viewable as one

43

Fulfilled. Albums are the main organisational unit, and all images are part
of a single album.

• Images in an album should be sorted by their date

Fulfilled. They are sorted by the date they are taken.

• It should be possible to move images between albums

Unfulfilled. Due to time constraints, I have unfortunately not yet been able to
implement this feature.

• It should be possible to delete images from the system

Fulfilled. It is possible to delete single images or entire albums.

• Moving and deletion should be possible for multiple images at a time
(high-priority wish)

Unfulfilled. This was not attempted due to time constraints.

• Users should be able to select individual photos as their favourite and show
them together (high-priority wish)

Unfulfilled. This was not attempted due to time constraints.

• It should be possible to display images on a map view (low-priority wish)

Unfulfilled. Was not attempted due to time constraints.

Photographs
• It should be possible to upload regular (JPEG) images into the application

Fulfilled. The application supports uploading of images in several common
formats, including JPEG and HVIF.

• It should be possible to download the original images back from the system

Fulfilled. The system stores the originally uploaded picture and allows the
user to download it back with the click of a button.

• The application should extract basic metadata (date and time, camera
settings) from the image

Fulfilled. During uploading, the date, location, camera and settings are
taken from the image metadata and stored. They are shown in the photo-
viewing interface.

• The application should employ techniques to allow for quick loading (such
as creating thumbnails and lazy loading)

Fulfilled. As part of the upload process, the app creates thumbnails and
previews to show in the interface. In addition, it employs lazy loading,
such that only images on screen are loaded.

• Besides pictures, the application should support videos and motion images
(low-priority wish)

Unfulfilled. Was not attempted due to time constraints.

44

Users and sharing
• It should be possible for users to authenticate themselves with a username

and password

Fulfilled. It is possible to create accounts and login with an email address
and password.

• Users should only be able to create albums when given the permission

Fulfilled. There are separate permissions for admin, editor and viewer
accounts. Only the first two can create albums.

• Users should be able to give other users (precise) permissions to their
albums

Unfulfilled. Due to time constraints, I have unfortunately not yet been
able to implement this feature.

• It should be possible to give non-authenticated users permissions to an
album using a link (high-priority wish)

Unfulfilled. In line with the previous point, this feature has also not been
implemented yet.

Conclusion
Over the span of several weeks, I have been able to fulfill many of the requirements
of the product. However, it is also clear that I greatly underestimated the time
necessary to implement these features. This left no time to implement most of the
wishes, and even lead me to abandon two of the set requirements. Nevertheless,
I believe that the application as it stands is a solid product and base for future
improvements, starting with the unfulfilled requirements and wishes.

Future Changes
Although I'm very happy with the results of this project and the product I was
able to produce, the photo gallery is in many ways still incomplete and open
for improvements. Of course, this includes unaccomplished wishes, but also
other features that were beyond the scope of this project, or came up during
development. This section presents a list of items that could be used be used to
further improve the software.

• Sharing. Being able to share albums is a core feature of the app that
hasn't been realised yet, and is therefore first on the list of improvements.
Besides sharing albums with other users, more fine-grained and public
sharing could further improve the application.

• Better organisation capabilities. Being able to download, remove or
move multiple images at once would be a large improvement of having to
take every action one by one. In addition, this could include photos being
part of multiple albums, and additional features such as user favourites.

• Do more with metadata. At the moment, metadata is stored and
shown next to the pictures. The usefulness of these could be improved by

45

displaying them more playfully (for example, in map views) and by using
them more broadly, for example for organising pictures.

There are also some improvements that are less visible (to most or even all users),
but are still important:

• Accessibility. The current version was not built with accessibility in
mind. Additional effort should be put in to ensure everbody is able to use
the product as intended, even when using tools like screenreaders.

• Action status and error handling. Forms and other interactive elements
do their job and show error messages when they happen. However, clearer
indicators of when something is happening in the background, transitions
and more granular errors (perhaps already before sending data to the
server) could greatly improve the user experience.

• Code optimisations. Some additional optimalisations, especially in
relation to caching and database queries, could improve performance and
put less strain on servers, and ensure up-to-date information is shown to
the user.

• Data fetching. Server components render the data and send it to the
client all at once. This works alright, but starts gettings slower for larger
albums, as a lot of data needs to be transferred. Streaming the data, or
only requesting it when scrolling down, could improve the experience.

When time permits in the future, I hope to come back to ImagiFolio to implement
these features and slowly evolve it into a mature piece of software.

Technology Reflection
Previously, Next.js, PostgreSQL and file storage were chosen as an "optimal"
technology stack. This section looks back on the development process to see to
what extent they performed as expected.

Framework
Overall, I've been quite happy with Next.js. With my basic knowledge of React
and Next.js's solid documentation, it wasn't difficult to get started with building
the application. Their file-based routing system makes it intuitive to create new
page routes, and data flow between the server and client is mostly seamless.

Some things, however, turned out more difficult than expected. During
development, I also had trouble with implementating some features, such as
page transitions and keeping state after navigating pages. With Next.js's large
community – my main reason for choosing the framework – I expected it to be
easy to find solutions to such problems. However, due to the recent (May 2023)
switch to the app router, most answers on sites like StackOverflow are outdated,
and there's not always solutions available for the newer versions.

46

Database
During this project, I have not stumbled upon any limitations of PostgreSQL.
The relational data structure makes it easy to model different data items and
their connections, and provides error messages when trying to do something
stupid (deleting an item that still has references elsewhere).

It must be said that with the library I used, the experience would probably have
been nearly identical when using the other relational options (MySQL/MariaDB).
Prisma even supports MongoDB, which could have been used in the same way,
although the current data model is far from optimal for that database, requiring
additional queries to achieve the same functionality.

Data Storage
As expected, native support by Node.js and all libraries make file storage a
breeze to use: passing them a file path is often enough to make things work. In
addition, serving files through a Next.js route handler makes it easy to perform
the same permission checks as for regular pages.

The big downside of file storage is scalability. On my desktop this isn't a problem
– there's enough disk space for thousands of pictures – but on my tiny webserver,
additional storage comes at a high cost, and I ended up spinning up a temporary
server with more space for showcasing the project. An object store that could
be connected to regardless of where the app server is hosted would have been a
nice alternative.

47

Reflection

When I first envisioned this Personal Pursuit, I put the focus entirely on learning
about a single technology to develop a web application. Over time, it has grown
to a much more complete and valueable project that included a structured
design process, a thorough comparison of different technologies, and finally, a
development stage.

Learning Objectives
At the start of the project, I set three learning goals that cover the different
stages of the project:

1. Conceive, design, and execute a goal-oriented learning experience at an
academic level, inspired by a personal interest or passion.

With help of my supervisor, I was able to set up and follow a structured
design process that allowed me to dive into the ins and outs of development
using a web framework, while combining it with my passion of photography.

2. Understand and explain the differences between different options of
technologies, and be able to select appropriate technologies for a web
application.

I have reached this goal by comparing the most popular technologies in
three different categories: web frameworks, databases and data storage.
Especially the comparison of frameworks – the field I was least familiar
with – has been very useful in getting to understand the differences – and,
not unimportantly, the similarities – between some of the most popular
options.

Although I performed a structured comparison of the different choices
based on the requirements of the photo gallery, it wasn't always easy to
find a single most suitable candidate, as some options were very close
in their capabilities. Nevertheless, I was able to pick an appropriate set
of technologies for the gallery, that turned out to work well during the
development.

3. Be able to apply and integrate a web framework with other technologies to
develop web applications.

Using the selected technologies – Next.js as the framework, PostgreSQL

48

for the database, and files as a storage method – I was able to build a
functional photo gallery that meets most of the stipulated requirements
(and could be extended to meet the others in the future).

Starting from my basic knowledge about web development, this
development process allowed me to expand my understanding of the
involved technologies and how to integrate them, as well as some other
tools that proved useful in the development. There is still a lot to learn
when it comes to advanced features and additional libraries, but the skills
I gained during this project are a great starting point for further growth.

Academic Development
Completing this Personal Pursuit and reaching these learning goals have
contributed to me becoming a better engineer. Not unimportantly, by teaching
me about new technologies and how to use them, as well as the field of web
frameworks in general.

But above all, I learned about how to execute a design process that includes a
thorough comparison of the needed technologies based on the requirements of
the application. Determining what tools to use for projects is an essential skill
for engineers, and this project enhanced my abilities to make such choices for all
kinds of projects in the future.

49

Appendices

50

ID Task Name Work

0 Personal Pursuit: Web Technologies 190 hrs
1 Proposal 24 hrs
2 Initial version 20 hrs
3 Progress meeting 0 hrs
4 Final version 4 hrs
5 Deliver final proposal 0 hrs
6 Technology research 72 hrs
7 Set up information website 5 hrs
8 Define application and requirements 6 hrs
9 Select options 5 hrs
10 Analyse options 12 hrs
11 Set criteria for comparison 14 hrs
12 Progress meeting 0 hrs
13 Compare technologies 30 hrs
14 Complete technology analysis 0 hrs
15 Design 14 hrs
16 Study other photo galeries 4 hrs
17 Progress meeting 0 hrs
18 Design and wireframe interface 10 hrs
19 Development 80 hrs
20 Set up framework 8 hrs
21 Build interface 12 hrs
22 Develop database interaction 12 hrs
23 Develop data handling 12 hrs
24 Progress meeting 0 hrs
25 Combine parts 14 hrs
26 Finalise product 14 hrs
27 Complete the application 0 hrs
28 Document development 5 hrs
29 Reflect on choices 3 hrs
30 Complete documentation 0 hrs
31 Reflection meeting 0 hrs

28/02

08/03

13/03

27/03

28/03

12/04

25/04

26/04
29/0

04 07 10 13 16 19 22 25 28 02 05 08 11 14 17 20 23 26 29 01 04 07 10 13 16 19 22 25 28 01
ary 2024 March 2024 April 2024 May

Martijn Atema Personal Pursuit: Web Technologies

	Introduction
	Proposal
	Design
	Analysis
	Requirements
	Interface

	Frameworks
	Next.js
	Gatsby
	Nuxt
	Meteor
	Astro
	Remix
	Conclusion

	Databases
	PostgreSQL
	MySQL
	MongoDB
	Redis
	MariaDB
	Cassandra
	Conclusion

	Data Storage
	File Storage
	Object Storage
	Database
	Conclusion

	Development
	Process
	Results
	Future Changes
	Technology Reflection

	Reflection
	Appendices
	Planning

